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Abstract

The use of X-ray and neutron scattering as a tool to
study phase transitions is well established. As tech-
niques improve and experiments are made under
successively higher resolution, the need to consider the
role of both the distribution of diffracting length scales
and the incident-beam coherence volume is emphasized.
The interplay of diffracting length scales and the beam
coherence volume no longer permits calculation of
diffraction pro®les in terms of the sample intensity
response convolved with an instrumental resolution
function. Rather, the probe and sample now enter the
calculation on an equal footing at the level of the
scattering amplitudes. Under these conditions, it is
found that the summation of coherent scattering
amplitudes leads to characteristic pro®les in wave-
vector and, in the case of resonant X-ray scattering,
energy space. In this latter case, in the vicinity of strong
absorption edges, as used for example in resonant
magnetic X-ray diffraction, the energy dependence of
diffraction pro®les may uniquely allow spatial localiza-
tion of the scattering volume below the sample surface.
This observation may considerably augment the range
and power of resonant X-ray scattering.

1. Introduction

The use of scattering techniques as the pre-eminent tool
to study, in microscopic detail, the mechanisms of a wide
range of phase transitions is well established. The
proportionality of the differential scattering cross
section to a two-site correlation function has been
formulated by van Hove (1954) and used as a basis for
the interpretation of many experiments. In this paper,
a discussion is given of the effects of incident-beam
coherence and sample absorption on the interpretation
of scattering experiments. It is found that, as the spatial
resolution is increased, the increase in beam coherence
volume plays a major role in the diffracted line shape.
An underlying theme, general to the whole paper, is
that under such conditions a calculation of the scat-
tering intensity must treat the probe and sample toge-
ther. In the proximity of a phase transition, or under

conditions of strong absorption, the standard result that
the measured intensity be given by a convolution of the
sample intensity with a probe response function will be
seen to break down.

The comments in xx2 and 3 on the interpretation of
scattering intensity in terms of a two-site correlation
function are general to any scattering process in which
the probe±sample interaction may be reduced to this
form. Normally this implies that the state function may
be separated into two independent parts, namely that of
the probe and that of the sample, viz the scattering
process may be represented by a suf®ciently weak
interaction (pseudo-potential). The fundamental inter-
actions are extensively discussed in the literature for
both neutron and X-ray scattering (Marshall & Lovesey,
1971; Blume, 1985).

Possible geometric reasons for the observation of
anomalous diffraction pro®les are presented; for
example, the common observation of a `two-length-
scale' pro®le in the disordered state in the vicinity of a
phase transition, and the observation, in the ordered
state, of split or multiple resonances in energy scans of
resonant magnetic diffraction peaks. It is not claimed
that these geometrical effects explain all of the bizarre
observations in the literature, but simply that perhaps
they deserve consideration before other conclusions are
drawn. Since the problem of two-length-scale diffraction
pro®les in wave-vector space has recently been elegantly
reviewed by Cowley (1996, and references therein), no
detailed commentary on the experimental situation is
included. On the other hand, the situation concerning
the energy-dependent pro®les, speci®c to resonant
X-ray scattering, is less widely known and some brief
experimental details are given.

To start, the term `diffraction' as used here is de®ned.
Experimentally, a diffractometer monitors the energy-
integrated response at ®xed scattering angle. For a probe
of high incident energy compared with the relevant
excitation spectrum of the sample, this yields a snapshot
of the system (this point is ampli®ed both in x2 and in
Appendix A). In common with the kinematical and
dynamical theories, the term diffraction will be used in
the more restricted sense that the state of the sample be
the same both before and after the scattering event. This
implies that the sum over ®nal states in the cross section
is dominated by the term jf i � jii and has the advantage
of permitting semi-classical calculations of intensities.
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The motivation for the use of such a `single-state'
approximation will be explained shortly. First, some
important length scales in the problem are de®ned.

Length scale (1): The coherence length. For the probe,
we consider the incident-particle/ray coherence volume.
This has a longitudinal dimension, parallel to the
propagation vector, which will be referred to simply as
the `coherence length', and two orthogonal transverse
dimensions. At a wavelength �, the magnitude of the
coherence length is given by �2=��. Associated with the
(longitudinal) coherence length is a coherence time
given by the coherence length divided by the incident
particle speed.

Length scale (2): The correlation length. For the
sample, we imagine, in the paramagnetic phase, the
formation of islands of order on all length scales. The
distribution is characterized by a correlation length. In
the ordered state, the role of correlation length may be
played by the domain size and in small samples by the
relevant sample dimension, for example the thickness of
a thin ®lm.

Length scale (3): The absorption length. This length
scale is dependent on the probe energy. While, on
account of the low ¯uxes, resonances are generally
avoided in neutron scattering experiments, techniques
have been speci®cally developed to exploit the resonant
dependence of X-ray scattering cross sections; for
example, resonant magnetic X-ray diffraction and
Templeton scattering.

The inverse of the probe coherence length sets a
lower bound on the wave-vector resolution and, like-
wise, the probe coherence time sets a bound on the
temporal changes in the sample-dependent properties.
Thus, the initial state jii of the sample will be considered
`frozen' and the single-state approximation jii ! jii is
useful in cases where the lifetime of jii exceeds that of
the probe coherence time. In the vicinity of a phase
transition and in the ordered state, the lifetime of low-
lying states may become extremely long and such an
approach may be validated. The precise interval
depends both on the probe coherence time and the
sample correlation time; this results in sensitivity to the
probe (neutron, X-ray), the incident monochromaticity
and the state of the sample (for example, near-surface
relaxation and defects may enhance the distribution of
quasi-static modes).

Correspondences and differences are noted between
this work and the conventional kinematical and dy-
namical theories of diffraction. All three approaches are
rooted in the same single-state approximation enabling
semi-classical calculation. The essential improvement of
the dynamical theory lies in the self-consistent solution
for the propagation of waves in a periodic lattice
potential. As is well known, this gives rise to band gaps
of forbidden frequencies of propagation, leading to the
`¯at tops' of perfect crystal diffraction. A further aspect
of the dynamical theory is beam attenuation by out-

scattering, which leads to Lorentzian tails ¯anking the
¯at-top pro®le. In contrast, both the theory developed
here and the kinematical picture correspond, from a
quantum-scattering point of view, to a single (rather
than multiple) collision of the photon (or neutron) with
the crystal and exhibit neither band gaps nor out-scat-
tering attenuation. It appears that, in principle, such
effects may be included without dif®culty in the present
theory, although this has not yet been attempted. The
present theory addresses the problem of partial beam
coherence and its interplay with ®nite scattering
volumes, which has been neglected in previous ap-
proaches.

The organization of the rest of the paper is as follows.
x2 de®nes the terminology and experimental conditions,
and the assumptions and approximations used in the
analysis. A discussion of the role of primary-beam
coherence and the interpretation of the scattering cross
section is given; the more technical aspects are followed
up in Appendices A and B. x3 deals with wave-vector-
dependent pro®les, ignoring the complication of ab-
sorption. It is demonstrated that a continuous distribu-
tion of regions of scattering density, over many length
scales, may, under conditions of high spatial resolution,
give rise to two component length-scale diffraction
pro®les. In the simulations, increasing the correlation
length gives rise to reductions in the line widths of both
components in the diffraction pro®le, which are found to
collapse at different rates.

While the ®rst two parts are general with respect to
both neutron and X-ray scattering, x4 is devoted to the
effect of absorption, which has been neglected in the
earlier sections, and is particular to X-ray resonant
scattering. For example, strong effects are anticipated at
the uranium M4, M5 edges on account of their high
absorption and the M4 edge is treated in detail. It
becomes necessary to consider the relative magnitudes
of the three length scales: the absorption depth, the
probe coherence length and the spatial extent of the
scattering object. As in x3, only in certain limits is it
possible to separate the observed intensity into idealized
sample- and probe-independent parts. In general, a
more careful calculation, treating the sample and probe
on an equal footing, is required. Since this may open a
way to measure the intrinsic energy line widths of the
resonances, some experimental details are given. In
addition, the important observation is made that, in
favourable cases, a spatial localization of scattering
below the sample surface may be made. This may
considerably augment the diagnostic power of resonant
(magnetic) X-ray scattering.

2. Coherence and resolution

Consider a scattering experiment. The incident beam is
taken as a sum of independent rays; each ray within the
beam has a coherence volume and coherence lifetime. If
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the scattering process occurring within a given coher-
ence volume cannot be localized, then the sum of all
possible amplitudes must be taken in constructing the
scattering probability. Scattering events occurring within
two distinct coherence volumes may, by de®nition, be
distinguished and their scattering probabilities summed
to give the total scattering cross section from the inci-
dent beam. The summation of amplitudes within the
(probe) coherence volume is what gives rise to, and
limits the extent of, the measurement of the correlation
function. The probe coherence volume then sets bounds
on the resolution; the investigated spatial scale cannot
be greater than the probe coherence volume and, like-
wise, the time scale of the correlations cannot be greater
than the probe coherence time.² The appropriate
correlation is measured subject to these bounds. At
phase transitions, care must be taken not to be misled by
size- and/or time-limited effects of the probe.

As an example, consider the measurement of the
magnetic response function. When the spatial scale of
magnetic order is greater than the probe coherence
volume, the integrated intensity of scattered radiation is
proportional to the square of the order parameter
(within the classical two-site correlation model).
However, close to the phase-transition temperature,
often a region of great interest, islands of disorder will
form within the ordered regions and one expects a wide
distribution of length scales to be important in the
problem (Wilson, 1979). The elemental scattering from a
given ray is the coherent sum of scattering amplitudes
over the distribution of length scales as it occurs within
the given (probe) coherence volume. The total scat-
tering is the sum of such elemental scattering intensities
arising from the individual rays in the incident beam.
This total scattering may differ in details from the
standard prescription of the Fourier transform of a
spatially averaged (thermodynamic) two-site correlation
function. In the derivation of the cross section, one
normally makes an implicit random phasing approxi-
mation [the extraction of a phase factor, exp(iqr),
outside the matrix element]. Amplitude interference
concerns ¯uctuations with lifetimes greater than, and
length scales smaller than, those of the probe coherence
volume (Appendices A and B). Care in interpretation
may be necessary, for example, in the approach to
magnetic order from the paramagnetic phase (Bern-
hoeft et al., 1995; Stunault et al., 1997).

The cross section is a sum of the scattering from
individual coherence volumes weighted by an initial-
state probability pi . For this to represent an ensemble
average implies that the typical probe coherence volume

over which the summation is made is large enough to
encompass a signi®cant number of initial states (an
argument for high incident-energy resolution and large
incident coherence volume). However, if one is to
perform an experiment as an ensemble average rather
than a time average, the incident beam must contain
many such volumes. A compromise is apparent between
a trend towards very high incident resolution and the
interpretation of results in terms of thermodynamic
quantities.

The use of low-incident-energy particles (radiation)
may pose a further problem of interpretation; in the
concatenation of the scattering matrix elements (within
the ®rst Born approximation), to form the two-particle
correlation function, one invokes the closure conditionP j�f ih�f j � 1 �1�
in a sum over the ®nal states. To ensure closure, this
summation must involve the full interference of a
complete set of states; if the ®nal states are strongly
®ltered (within the ®rst Born approximation the avail-
able ®nal states are restricted by the energy of the
incident particle), a suitable projection operator to limit
the accessible states must be found to maintain closure
and produce a correlation function. Limiting the acces-
sible states may preclude straight-forward interpretation
of the cross section in terms of a thermodynamic
correlation function in some circumstances.

2.1. A model system

A simple cubic lattice is considered as a model system;
the scattering plane is taken parallel to the plane
containing the lattice vectors a and c. The sample has no
miscut and is aligned with its surface normal, c, vertical,
as in Fig. 1. The lattice sites are taken to have, unless
otherwise stated, equal scattering power, which, to be
`concrete' is nominated the `magnetic moment'.

3. Diffraction pro®les as a function of scattered wave
vector

In this section, scattering at ®xed incident energy is
considered, neglecting the effects of absorption, which
are dealt with in x4 and Appendices D and E. The
general conclusions will be appropriate for both neutron
and X-ray (resonant and non-resonant) scattering. The
variations arise only in the orders of magnitude of the
characteristic length scales. As discussed in the Intro-

Fig. 1. The scattering geometry considered in the text.

² Intensity correlations, as opposed to scattering-amplitude correc-
tions, may of course be measured on arbitrary long scales, as for
example, in the study of Brownian motion by speckle experiments
(Sutton et al., 1991). Such higher-order correlation functions are not
discussed here.
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duction (x1), diffraction is considered where the inte-
gration over outgoing energies is suf®ciently extensive
that, to a good approximation, the instantaneous two-
site correlation function is measured. Then, within the
single-state approximation, the measured intensity from
an elemental coherence volume is

I / j f j2; �2�
where

f �PNz

z

PNy

y

PNx

x

mx;y;z exp�i�qxrx � qyry � qzrz��: �3�

The sum has been split into orthogonal components Nx,
Ny and Nz where there are Nx sites along the x axis etc.
and one has N � Nx Ny Nz sites within the probe
coherence volume. For a scattering power m indepen-
dent of site index,

I / m2 sin2�qxNxa=2�
sin2�qxa=2�

sin2�qyNya=2�
sin2�qya=2�

sin2�qzNza=2�
sin2�qza=2� :

�4�
This yields a peak intensity of order m2N2 with a peak

width, along each qi , of order 1=Nia. Absorbing an
inessential factor of 1=a3 into the constant of propor-
tionality, this gives an integrated intensity proportional
to m2N per coherence volume. In an illuminated sample
volume V there will be V=Na3 coherence volumes,
yielding a ®nal integrated intensity proportional to m2V,
as expected.

Expanding the intensity within the given coherence
volume along a given component of the scattered wave
vector, e.g. qz, one obtains, for small qz,

I�qz;Nz� /
N2

z �1ÿ �N2
zq2

za2=223!� . . .�2
�1ÿ �q2

za2=223!� . . .�2

� N2
z

f1� ��N2
z ÿ 1�q2

za2=223!�g2

� N2
z

�1� �q2
z=ÿ

2��2 ; �5�

a Lorentzian squared function with half width inversely
proportional to the number of coherent scattering
planes. At larger scattering angles, the envelope of
successive maxima of sin2�Nzqza=2� will fall as 1=q2

z,
giving rise to Lorentzian-like tails. This, the scattering
from an elemental volume, thus has a tendency towards
a diffraction pro®le with a sharp central peak super-
posed on a broader tail.²

Consider what happens now upon addition of such
terms as each elemental volume contributes to the
scattering power. One may identify two distinct cases. In
case (1), the existence of long-range order, the scattering

power of the sample is uniform over the incident-
radiation coherence length. In case (2), short-range
order, there exists a distribution of magnetization
correlation lengths within a typical probe coherence
length. It may be noted that in this context the de®nition
of long- or short-range order depends not only on the
sample but also on the probe characteristics. Explicitly,
the maximum value of the summation in equation (4),
Nz, nominated Nmax, is different in the two instances. In
case (1), Nmax is given by the probe coherence length,
while in case (2) Nmax is given by the intrinsic correla-
tions in the sample.

3.1. Case (1)

In the ®rst case, the distribution of probe coherence
lengths in the incident beam will result in the total
scattered intensity being a summation of the form

Itotal�q� �
P
Ncoh

<�Ncoh�I�q;Ncoh�; �6�

where to be explicit we have written Nmax � Ncoh and
where I(Ncoh) is the elemental scattering intensity from
each incident coherent radiation volume taken up to the
limit of the individual ray. <�Ncoh� is the probability
distribution function of the coherence lengths of the rays
in the incident beam. Since the peak intensity and line
width are both non-linear functions of Ncoh, the distri-
bution <�Ncoh� can alter the diffraction pro®le.

3.2. Case (2)

The second case may be separated into two parts, (2.i)
and (2.ii). In (2.i), taking <�Ncoh� to be the same for all
rays, i.e. a � function at a given probe coherence length
Ncoh, we consider the case where each ray has within it a
single ordered region of size Nsample, smaller than Ncoh.
Thus, Nmax for a given ray is determined by the sample
distribution Nsample. Different rays will in general
encompass ordered regions of different sizes. This would
correspond to an image of a material approaching a
magnetic phase transition where the regions of instan-
taneous order are `dilute' on the scale of Ncoh. This gives

Itotal�q� �
P

Nsample

P�Nsample�I�q;Nsample�; �7�

where P(Nsample) is the intrinsic distribution of correla-
tion lengths and I�q;Nsample� is the corresponding
intensity distribution.

In (2.ii), the individual rays enclose more than one
region of order within their bounds, and the regions of
order within the given coherence volume may be of
different sizes. This is dif®cult to treat in any general
manner; a model distribution of the local order must be
given (see for example the discussion in Appendix B).

The distinction between cases (1) and (2.i) is that in
the latter the bound arises from the sample while in the
former it is a property of the probe. Despite their

² The tendency to Lorentzian tails is enhanced by the effects of
absorption, as in x4.
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different origins, mathematically they give the same
summations and thus case (1) will be considered in the
treatment of (2.i). The difference between (2.i) and (2.ii)
is that in the former an incoherent sum of intensities has
to be performed and in the latter a coherent sum over
the ordered regions within the individual coherence
volume has to be performed ®rst. In an experiment, one
may have to consider the convolution of both effects.

3.3. Numerical results

Diffraction pro®les from a typical correlation-length
distribution function are considered. Since the summa-
tions over x; y; z are independent, attention will be
focused on the results of scattering along one direction,
hereafter nominated q. It should be noted however, that,
unless rather special precautions are taken, there is a
cross-coupling between the scattering in specular and
off-specular directions, i.e. qz and qx, qy, through the
resolution function. In this work, since they are ines-
sential to the argument and to avoid clouding the
discussion, angular resolution effects are ignored at all
levels (see Appendix C).

In the following example, we note that the same
sample distribution P(Nsample) of scattering objects gives
rise to a single Lorentzian pro®le for a low (probe)
coherence length, and to the appearance of a two-
length-scale diffraction pro®le when examined with a
high probe coherence length (high spatial resolution).

A model distribution function, P(Nsample), along an
axis z is chosen with the form �1=z� exp�ÿz=�a�, where �
is the correlation length in lattice units (a). The moti-
vation for the choice of this form is its similarity to the
Ornstein±Zernike form for the static susceptibility
which is measured in the instantaneous approximation.
In practice, the precise form is not critical to the argu-
ments that follow. In this example, the length scale, �,
acts as a convenient parameter in the model. Case (2.i) is
assumed, that is, each probe coherence volume has one
scattering region within it. The scattering observed is
then proportional to the following sum where each term
represents the scattered intensity from a region of
dimension Na encompassed by an individual ray,

XNcoh

1

1

Na
exp
ÿN

�

� �
sin2�Nqa=2�
sin2�qa=2� : �8�

This sum has been numerically investigated by
varying the values of correlation length (�) and for two
different values of probe coherence volumes (Ncoh). In
the ®rst study, Ncoh is given the value 100 lattice units to
represent an experiment under conditions of low reso-
lution, while, in a second set of simulations, it was set
equal to 1000 lattice units to represent a high-resolution
experiment. For both calculations, the step in q was
taken to be 0.001 r.l.u. (reciprocal-lattice unit).

3.4. Low-resolution study (Ncoh � 100)

First, it is found that, if the correlation length is small
(typically less than 40 lattice units), the pro®le of
intensity against the modules of the wave vector (q) may
be well approximated by a single Lorentzian. The ®tted
Lorentzian half-width at half-maximum (HWHM) scales
with the inverse correlation length in this regime. In
Fig. 2(b), a calculated diffraction pro®le at a value of
sample correlation length � � 15 is presented together
with a Lorentzian ®t. As � increases, the pro®le sharpens
and remains approximately Lorentzian; however, the
HWHM is now found to decrease less quickly than �ÿ1

on account of the limit to the observable correlations
imposed by the probe coherence volume Ncoh. This is
the spatial resolution limit.

Since this model system is to be a crude representa-
tion of the behaviour in the vicinity of a phase transition,
the intrinsic correlation length � as a function of a
variable t is considered, where t � �T ÿ Tc�=Tc repre-
sents a (hypothetical) reduced temperature. This then
permits one to investigate the characteristics of the
intensity pro®les as a function of t, as summarized in
Table 1 and Fig. 3.

At low correlation lengths, the variation of the
HWHM, ÿLorentzian, is determined by the imposed

Fig. 2. (a) The probability distribution on a logarithmic scale used in
the calculation of the scattering pro®le [case (2.i)] for a correlation
length, �, of 15 lattice units and a probe coherence length of 100
lattice units. The inverse of the HWHM is approximately 3.7 to 4
times greater than �, as illustrated by the vertical arrow. In (b), the
points give the result of the numerical simulation and the solid line
through the points is a ®t to a single Lorentzian function.
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behaviour of �. In the same regime, the intensity of the
scattering at q � 0 increases somewhat faster than the
correlation length. Once the effect of probe coherence-
length limiting comes into play, neither the behaviour of
the Lorentzian HWHM nor its intensity follow simple
power laws for an imposed power-law behaviour of �.

3.5. High-resolution study (Ncoh � 1000)

In simulations for Ncoh � 1000 lattice units, the
behaviour is, as expected on the basis of the above
observations, straightforward at low correlation lengths.
The simulation is dominated by the behaviour of
P(Nsample). One has a single Lorentzian line shape with a
HWHM increasing inversely with �. The effect of spatial
resolution is illustrated in Fig. 4 for the case where
� � 50 and the calculated diffraction pro®les are given
for incident beams of both low and high resolution with
Ncoh � 100 and 1000, respectively. As anticipated, the
low-q portion for Ncoh � 1000 is more intense, giving
rise to a narrower half width.

At higher values of �, a new feature appears, namely a
two-component line shape. In Fig. 5, simulations for the
cases � � 10 and 100 lattice spacings are presented. The
lower plot �� � 10� retains the simple Lorentzian form,
while the upper plot �� � 100� is dominated by a sharp
central peak riding on a broader feature. The two
components in this latter plot may be approximately
analysed in terms of the sum of a Lorentzian and a
Lorentzian-squared line shape, this is shown by the solid

line. In the two-component line shape, the narrow
Lorentzian-squared term takes over the dominant
central region and the Lorentzian is now the broader,
and weaker, component. Perhaps it should be stressed
that no new length scales have been introduced to the
distribution. The observed effect arises from the
increased spatial resolution of the probe. The results are
summarized in Table 2 and illustrated in Fig. 6.

3.6. Summary of behaviour

The above comment on the role of the probe coher-
ence volume in diffraction pro®les is not an answer to
the two-length-scale problem. It may, however, be worth
emphasizing that, under high resolution, if the physical
length scale � varies for some reason as tÿ1 (e.g. Altarelli
et al., 1995), then there may appear a `broad' compo-
nent which varies approximately in the manner
expected for thermodynamic ¯uctuations (see Cowley,
1996, and references therein). This could be

Fig. 3. For an imposed variation of � on the variable t (reduced
temperature), the ®gure gives the corresponding variations in
HWHM and intensity at q = 0 resulting from Lorentzian ®ts to the
numerical simulations. The probe coherence length is 100 lattice
units. For � varying as tÿ1, the HWHM is found to be proportional to
t0.8 and the intensity to tÿ1.5.

Fig. 4. The calculated scattering pro®les at ®xed sample correlation
length, � = 50, and for two different values of probe coherence
length. For wave vectors above 0.01 r.l.u. the calculated points lie
upon one another; at low q the increased spatial resolution available
for N = 1000 allows the peak to develop. Both pro®les are essentially
Lorentzian; however, at high resolution the HWHM is reduced by
approximately 40%.

Table 1. Characteristics of the intensity pro®les of the low-
resolution study

Ncoh = 100 � < 50

� imposed as power of t ÿ1.0
Line shape Lorentzian
HWHM as power of t 0.8 (1)
Intensity at q � 0 as power of t ÿ1.5 (1)

Fig. 5. The lower plot shows the simulation for � = 10 and the upper for
� = 100, at Ncoh = 1000. The single Lorentzian line shape at low � is
replaced by a more sharply peaked function, which may be
approximately represented by the sum of a Lorentzian and a
Lorentzian-squared function (full line through the points in upper
plot).
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misleading. In the analysis of a full experiment, one
would also have to take into account the angular
resolution, probe coherence volume distribution [case
(1)], and the interference arising from scattering
regions located within a given probe coherence
volume [case (2.ii)]. Finally, the effects of absorption,²
spatial variation of defect density (e.g. near-surface
roughness) and, where relevant, domain formation and
variation of magnetization within the sample volume,
may play more signi®cant roles in a given observation
(Bernhoeft et al., 1995; Stunault et al., 1997). What is
clear, however, is that there is a tendency for the
diffraction pro®le to have a `two-component' form when
looked at in suf®cient detail. This effect is superposed on
the distribution P(Nsample) and it may be dif®cult to
disentangle the two.

4. Energy-dependent diffraction pro®les (X-rays)

The problem of absorption is now considered; in parti-
cular, the effects of the strong energy dependence of
absorption encountered in X-ray resonant diffraction. It
will be shown that exploitation of resonant-energy-
dependent diffraction pro®les may allow X-rays
uniquely to spatially localize the source of scattering
below the sample surface. To the author's knowledge,
previous use has not been made of this effect. The
effects of absorption will also, in the appropriate limits,
play a role in the discussion given in x3 above, where
they lead to Lorentzian tails in the wave-vector-depen-
dent diffraction pro®les. In this work, for ease of
discussion, the wave-vector and energy dependencies of
the scattering pro®les are considered separately. In
experimental analysis, one must consider both together
as necessary.

4.1. The model

We consider again the model system introduced in x2.
As mentioned in the Introduction (x1), there are three
principal length scales to consider. First, the probe
coherence length. For simplicity, as in the discussion of

case (2.i), the distribution function <�Nprobe� is
approximated by a � function at Ncoh. Second, there is
the depth from the sample surface below which the
sample exhibits a scattering power. For example, in the
case of a thin ®lm of uniform magnetization, the scat-
tering power may be more or less abruptly terminated
by the substrate. Or, in a large sample, in the vicinity of a
phase transition one may have the phenomenon of near-
surface ordering (disordering) in the presence of bulk
disorder (order) (Stunault et al., 1997).³ Third, there is
the absorption depth. This quantity may be strongly
energy dependent in the vicinity of an absorption edge,
e.g. in resonant (magnetic) scattering.

4.2. Scattering from a uniform sample

Uniform sample scattering power as a function of
depth is assumed. In the case that the longitudinal probe
coherence length is much smaller than the absorption
depth, i.e. the normal case of low absorption, one may
correct diffraction pro®les, as a function of incident
energy, neglecting the role of coherence (see Appendix
D where this standard calculation is repeated for
completeness). More subtle effects occur when the
absorption depth and probe coherence lengths are
similar. In this case, one has to take account of the
change in scattering power occurring within the coher-
ence volume.

Focusing attention on the variation of the diffraction
pro®le with incident energy at the Bragg point of the
scan (all scattering elements in phase), for a simple
resonant process with a Lorentzian (in energy) line
shape, one gets

I / ÿ2

ÿ2 � ��Eÿ h- !�2
m�1ÿ exp�ÿ��Nmaxa��
�1ÿ exp�ÿ��a��

� �2

; �9�

where, for a beam incident at angle � and exiting at
angle �,

�� � ��=2��1= sin �� 1= sin ��: �10�
Equation (9) splits naturally into two parts, both

dependent on the incident photon energy. In the ®rst
factor, ÿ is the effective inverse lifetime of the scattering
process, �E the energy step between the initial and
intermediate states of the resonant process, and h- ! the
incident photon energy. In the second part, m is the site
magnetic moment, � the energy-dependent inverse
absorption length [viz the intensity falls as exp�ÿ�L�
over a distance L], N the number of lattice sites in the

Table 2. Characteristics of the intensity pro®les of the
high-resolution study

Ncoh � 1000 � < 50 50 < � < 200

� imposed as power of t ÿ1.0 ÿ1.0
Line shape Lorentzian Lorentzian plus

Lorentzian squared
HWHM as power of t 0.8 (1) 0.60 (4) + 0.85 (8)
Intensity q � 0 as power of t ÿ1.5 (1) ÿ1.26 (6) + ÿ1.9 (1)

² It is of interest that the exponentional decay of beam intensity
with path length gives an identical form (with opposite sign) to the
pro®le as obtained by considering a rough surface with an
exponentially depleting number of layers (Stunault et al., 1997).
The two effects may work one against the other to yield spurious
estimates of both surface roughness and absorption coef®cients.

³ Parenthetically, it is noted that effective non-uniform scattering
power for diffraction in a given direction may also arise from, for
example, a depth-dependent distribution of magnetic domain sizes.
This distribution, for example large surface domains to small bulk
domains, will alter the coherent scattering power as a function of
depth, mimicking a changing magnetic moment. Careful analysis of the
wave-vector-dependent pro®les in orthogonal directions may be used
to resolve this case.
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coherent sum, and a the lattice parameter. The exten-
sion by which the formula becomes a function also of the
scattered wave vector is given in Appendix E.

One readily sees, in the limit of negligible absorption
with �a and �aNmax both small, that the second factor in
(9) will scale like m2N2

max and one has an analysis as in
x3. Considering, in this section, the pro®le in energy at
®xed scattered wave vector, one sees that, in this limit,
it is independent of � and hence will be a simple
Lorentzian of half width ÿ. This is distinct from the
case, calculated in Appendix D, where the absorption is
weak on the scale of the probe coherence length but
important on the scale of the total diffracting thickness.
Finally, in the limit that �a is small but �aNmax is large,
i.e. the scattering from a material in which the absorp-
tion gives important changes in scattering power over
the longitudinal probe coherence length, one obtains an
intensity

I / ÿ2

ÿ2 � ��Eÿ h- !�2
m

��a

� �2

: �11�

This pro®le is characteristically broadened, or split, on
account of the incident-energy dependence of �.

The discussion just given, for scattering from a
diffracting volume starting at the sample surface, will be
modi®ed for those incident rays which are not scattered

within the ®rst coherence length. They will make a
contribution that is exp�ÿ2��aNcoh� weaker. By
assumption, this attenuation is large and their contri-
bution has been neglected in the calculations described
below. These corrections are set out in the latter part of
Appendix D.

In the calculation of relative angular intensities of
different Bragg re¯ections, one also has to take care of
the angular dependence of the incident-beam footprint,
Lorentz factor and the geometrical factors in the cross
section. We note that, in comparison with the standard
formula [equation (34) in Appendix D], an extra angular
dependence is implied in the case of strong absorption
on account of the factor ��2 in the denominator (as
opposed to �). This may be important when (semi-)
quantitative use is made of resonant intensities.

Fig. 7. Simulations at the Bragg point of the energy pro®les for scans
through the M4 uranium absorption edge. From top to bottom, 2,
600 and 1000 correlated lattice planes are diffracting, respectively.
The parameters used are given in Appendix F. For less than 600
planes, the pro®le remains approximately Lorentzian, as illustrated
by the solid lines in the upper two plots. The dotted line marks the
position of the maximum of the absorption pro®le at 3.728 keV
[equation (41)].

Fig. 6. For a given variation of � with the parameter t, � / tÿ1, the plots
show the dependence widths and intensities of the ®tted sum,
Lorentzian (L) plus Lorentzian-squared (L2) pro®les. The model
parameters for Ncoh and � have typical experimental values of 1000
and 20 to 200 lattice spacings, respectively. The upper panel gives
the variation of intensity at q = 0 while the lower gives the
corresponding dependence of HWHM on t. Approximate power-
law behaviour is found, as given in Table 2.
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4.3. Example: uranium M4 resonance

By way of example, the energy dependence at a
(magnetic) Bragg peak has been calculated in the strong
absorption limit. That is to say, at each incident energy,
one sets the crystal to the Bragg condition in q-space
and monitors the intensity as a function of incident
photon energy. For the numerical calculation, the
�001=2� Bragg re¯ection is chosen with a c-axis param-
eter of 4 AÊ , using equation (9), for the case of uranium
M4 resonance. A parameteric form of the M4-edge
absorption, as measured in transmission from UO2 thin
®lms (Cross et al., 1998), has been used in the calcula-
tions. This, along with other numerical parameters, is
discussed in Appendix F.

The results of the calculations are shown as the points
in Fig. 7; the solid lines are least-squares ®ts to the
approximate Lorentzian pro®le, an approximation that
becomes successively poorer as the number of
diffracting layers increases. At the top of the ®gure, for
few diffracting layers (low Nmax), the pro®le in energy is
close to Lorentzian and the HWHM is close to the input
value ÿ � 2:2 eV. On increasing Nmax, a broadening and
splitting commence although the peak maintains an
approximately Lorentzian form, as shown in the central
frame of Fig. 7, until, at the bottom of Fig. 7, two peaks
have formed, the low-energy peak being character-
istically the higher on account of the increased absorp-
tion occurring above the resonant edge.

The condition of peak splitting depends on the rela-
tive values of Nmax and the absorption length. Nmax may
be controlled either by varying the incident-beam
coherence length or the number of diffracting layers
(e.g. by use of thin ®lms or exploiting the temperature-
dependent correlation lengths in a sample near the point
of the phase transition). The absorption length may be
varied with the concentration of uranium nuclei.
Assuming that the absorption of the uranium ion is
independent of its local environment in a given set of
materials, one may follow the evolution of the HWHM
with both Nmax and absorption length. In the top frame
of Fig. 8, from top to bottom, curves of the resonant
pro®le half-width for uranium densities of 10, 6 and
3 g cmÿ3 are given. For values of HWHM less than
about 4 eV, the predicted peak splitting is not marked
and, in the presence of instrumental energy resolution,
may go undetected. The intensity of the response at the
resonant energy, as modelled by a Lorentzian ®t, is
displayed in the bottom frame of Fig. 8. In addition, for
the highest uranium density, a dotted line has been
added to show the N2

max dependence that would be
anticipated in a more elementary approach [equation
(3)]. One sees that, for large optical path lengths, a short
fall in intensity may amount to almost an order of
magnitude in this most extreme case. This could lead to,
for example, erroneous estimates of the evolution of the
order parameter in a material where the domain size
changes with temperature.

4.4. Scattering from a thin ®lm

Since the use of energy-dependent scattering is less
well established in the literature, and on account of the
fundamental interest in the measurement of resonant-
energy line widths, a method to measure intrinsic
magnetic resonant widths in the presence of strong
absorption is proposed. The method is to prepare the
material in the form of a thin ®lm. The experiment
consists of measuring the resonant-energy pro®le for a
series of specular re¯ections and determining the ®lm
thickness either by re¯ectivity or by some external
means (deposition rate, mass etc.). In a given Bragg
event, the depth of magnetic re¯ection is limited by the
physical ®lm thickness, this then allows one to calculate
the energy-dependent pro®le from which ÿ may be
estimated.² Such experiments have recently been
carried out (Bernhoeft et al., 1998).

4.5. Scattering from a non-uniform sample

A restricted number of diffracting magnetic layers
may also arise in materials that show near-surface

Fig. 8. The variation of (Lorentzian) HWHM in energy for Bragg
scattering at the M4 uranium resonance, and its intensity at the
resonant energy are shown in the upper and lower frames,
respectively. The calculations have been made for three different
uranium densities: 10, 6 and 3 g cmÿ3 going from the upper to the
lower curves. The parameters for the simulations are given in
Appendix F.

² Given the absorption of the resonant species as a function of energy
determined, for example, from the intensities of the substrate peaks or
by transmission or ¯uorescence.
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ordering. In such materials, in the vicinity of the phase
transition, one may have a magnetic surface layer only a
few tens of an aÊngstroÈ m thick. The energy-dependent
diffraction pro®le may be used to establish the fact that
this layer is in the near surface and, furthermore, one
may monitor its evolution with temperature. This spatial
localization of the diffraction volume is unique to such
strongly absorbing processes and extends the range of
information available in resonant scattering experi-
ments. The intensity of diffraction of such regions
appears, experimentally, at least in some cases, to be
related to the near-surface condition. A close study of
this effect may help to shed some light on the physical
origin of the occurrence of two-length-scale diffraction
pro®les in scans against wave vector (Bernhoeft et al.,
1998).

The case of materials that show a depression of
magnetization near the surface is also interesting. In this

case, the presence of `dead' layers, which diffract only
weakly, if at all, allows the strongly energy-dependent
absorption to alter considerably the diffraction pro®le in
energy. It may give rise to the formation of a `pair' of
peaks at the resonance; the exact details become sensi-
tive to the assumed magnetic con®guration. Examples
are given in Fig. 9; it is seen that ten layers do not much
affect the pro®le, while 50 layers (200 AÊ ) leave their
mark. Such dead layers may arise due to surface damage
(250 layers in the model given corresponds to 0.1 mm, a
not untypical depth of damage), the presence of non-
diffracting domains preferentially forming at the near
surface, or a non-magnetic layer, due perhaps to
oxidation.

5. Conclusions

The roles of geometric effects, the incident-beam
coherence volume and the sample-dependent absorp-
tion and distribution of scattering power have been
discussed. Their interplay may give rise to interesting
effects in both wave-vector and energy scans; in parti-
cular, when the partial coherence of the incident beam is
signi®cant the analysis of diffraction pro®les in terms of
a sample response function convolved with an instru-
mental resolution function may fail.

For a given distribution function, it is shown in x3 that
(i) the wave-vector pro®le under conditions of low
spatial resolution is Lorentzian in form, and (ii) under
conditions of higher spatial resolution one obtains a
pro®le which evolves from a single Lorentzian form to
one better described as the sum of a Lorentzian plus a
Lorentzian-squared pro®le as the sample correlation
length, �, is increased. Further, if � varies with a model
parameter t, taken to represent the reduced tempera-
ture, as � / tÿ1, then, under the conditions of high
resolution, the apparent temperature dependence of the
HWHM of the Lorentzian component may mimic that
of thermodynamic ¯uctuations, while the Lorentzian-
squared component has a more rapidly decreasing line
width. This illustrates that (i) the observation of a
two-component pro®le may be possible in a system that
has a single representative length scale, and (ii) the
approximate power-law dependencies of the widths and
intensities of the two components may be misleading.

In x4, energy analysis at a resonant-diffraction pro®le
is discussed. It is found that, unique to this technique,
spatial localization of the diffracting volume may be
possible, allowing diffraction experiments, rather than
grazing-incidence surface scattering, to be performed
with the ability to localize spatially the source of the
scattering. This observation considerably augments the
diagnostic power of resonant X-ray scattering.²

Fig. 9. In the presence of `dead' surface layers, the energy-dependent
pro®les of Bragg scattering at the M4 uranium edge show a variety
of structures. From the top to the bottom, the number of non-
diffracting layers increases from 10 to 50 to 250 for a constant total
depth of diffraction of 1000 layers. The remaining parameters and
the dotted vertical line are as in Fig. 7.

² Noted added in proof: Since submitting this article, a publication on
the role of partial coherence in scattering has appeared (Sinha et al.,
1998).
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APPENDIX A

In the conventional analysis, the scattering probability
can, aside from a set of constants related to the system±
probe interaction, be represented in the following form
(Marshall & Lovesey, 1971):

S�q; !� �
Z1
ÿ1

dt

2�h-
exp�ÿi!t�

X
i

pi

�
�
i

����X
j

exp�ÿiqRj�
X

k

exp�iqRk�t��
����i�; �12�

where h- ! is the difference between the outgoing and
incident energy of the probe. One sees that the instan-
taneous correlation is not encumbered by time asym-
metrization. This limit is reached by equal integration
over all outgoing energiesZ
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and allows one to write the scattering probability in the
form

S�q� �P
i; f
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�����
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����P
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exp�ÿiqRj�
����i�
�����

2

: �14�

In the (semi-classical) calculations of the main text,
designed to highlight the role of coherence in diffraction
pro®les, the sum over all states j f i is approximated by
the (supposed dominant) self term jii. The state jii is
labelled by Nmax appropriate to the coherence volume of
a given ray.

By contrast, the scattering falling into a small band of
frequencies at !0 is given by integration with the ®lter
function ��!ÿ !0� yielding, as is well known, the
Fourier component at !0:Z

d! ��!ÿ !0�S�q; !�
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In particular, the zero frequency, or elastic response, is
seen to be the equal integration over all time of the
t-asymmetric correlation function
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Note that in the case of strong absorption the probe
wavefunction will decay within the coherence volume,
giving rise to a complex scattering wave vector. This
gives rise not only to Lorentzian tails in wave-vector
scans, as discussed by Bernhoeft et al. (1995) and
Stunault et al. (1997) (beam depletion by out-scattering
is likewise the physical origin of the Darwin tails in
perfect-crystal diffraction) but also interesting effects in
energy scans through an energy resonance as discussed
in x4.

APPENDIX B

The distinction between the straight Fourier transform
of a two-site correlation function that is dependent only
on the sample and the analysis given may be described
as follows. First, it is recognised that the (total) cross
section is a weighted sum over probe coherence volumes
of matrix elements evaluated within a probe coherence
volume; this is the content of equation (12). Continuing
as in, for example, equation 3.12 of Marshall & Lovesey
(1971), one introduces a random phasing approximation
and extracts a phase factor exp�iqr� outside the matrix
element. The matrix elements so formed are then
averaged over coherence volumes and ®nally (spatially)
Fourier transformed according to the extracted phase
factor exp�iqr�.

In contrast, if the phased sums are made within a
coherence volume, yielding a harmonic function of
argument (qaN), then these act as the appropriate set of
transform functions on the distribution pi(N) [equation
(14)]. In case (2.i) (x3.2), the transform functions are
sin2�qaN=2�=sin2�qa=2� [equation (8)] and it is these
transform functions that give rise to the tendency to
form a sharp peak at the zone centre superposed on
a broad background. In the situation where there are
many accessible ®nal states, i.e. beyond the single-
state approximation, the sum over ®nal con®gurations
will tend to wash out the domineering contribution
of the high-N states to the transform functions,
sin2�qaN=2�=sin2�qa=2�. This lowers the spatial resolu-
tion. The role of time averaging is to introduce a
random phasing within the matrix elements. Recall that
the phenomenon of time averaging is limited by the
probe coherence time. If the different states cannot be
accessed within this time, for example on account of
critical slowing down or lifetime enhancement due to
the presence of local defects, disorder, surface etc., then
a quasi-frozen distribution will be seen and the ®nal
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states will be strongly restricted and one may arrive at
the single-state approximation. This suggests that
curious wave-vector diffraction pro®les may be
enhanced by probes with good q resolution and poor
incident-energy resolution (relative to the lifetime of the
¯uctuations). Case (2.ii) (x3.2) has, in general, more
intricate transform functions, which have to be deter-
mined in each case. They will tend to retain the same
peaking structure on account of being coherent sums.
Finally, in x4, the absorption within a coherence volume
is introduced. This yields a complex, as opposed to
harmonic, transform. The transform functions are given
for the simplest case in Appendix E [equation (39)].

In the ®nal part of this Appendix, it is noted that
simple analytic forms may be given for certain distri-
butions P(Nsample). In particular, the normalized top-hat
distribution for correlation lengths between N0 and N
lattice spacings,

Psample �
1

N � 1ÿ N0

; �17�

yields a pro®le

Itotal�q� �
1

2 sin2�qa=2�
�

1ÿ cos�qa�N � N0�=2�
N � 1ÿ N0

� sin�qa�N � 1ÿ N0�=2�
sin�qa=2�

�
�18�

and the normalized triangular distribution for m � 1 to
N,

Psample�m� �
m

N�N � 1�=2
; �19�

yields

Itotal�q� �
1

2 sin2�qa=2�
�

1ÿ sin�qa�2N � 1�=2�
�N � 1� sin�qa=2�

� sin2�qaN=2�
N�N � 1� sin2�qa=2�

�
: �20�

These distributions maybe useful as blocks with which to
build more complex functions Psample. It should be noted
that, depending on the instrumental angular resolution
both within and out of the scattering plane, one may
have to consider an effective distribution for Psample

taking into account the integration, or lack of integra-
tion, in the two orthogonal directions to that of the scan
variable [see discussion in x3 around equation (4)]. In
particular, if the scattering objects are approximately
isotropic in space, and the spectrometer does not
provide suf®cient integration in the orthogonal direc-
tions under conditions of high resolution, the larger
scattering objects will gain rapidly in scattering power
over the smaller ones, tending to augment the effective
tail at large Ncorr in Psample. This will increase the relative
importance of the sharp component, leading to more
pronounced temperature dependencies. In a similar way,

in frequency space, the role of probe coherence time and
integration over outgoing energies may in¯uence the
effective Psample.

APPENDIX C

In the main text, the incident energy resolution is
approximately taken into account by the ®nite (longi-
tudinal) coherence length of the probe, while the
smearing of wave-vector pro®les due to the angular
resolution is suppressed. The angular or spatial resolu-
tion has two parts. First, there is the angular distribution
of (probability amplitude) paths to be summed over
within a given coherence volume, and, second, there is
the angular spread of the rays (due to focusing optics
etc.), which leads to a summation of intensities weighted
by an appropriate angular (distribution) function. The
former, at the level of transition amplitudes, has to be
included within the coherent summation and expresses
the spatial (transverse) extent of the incident coherence
volume �.

Iray /
����P

j

R
�

Df ��ÿ �0� f �Q; rj�Di��ÿ �0� d� d�

����2;
�21�

where Di,f is the distribution of the (indistinguishable)
paths that have to be included in the summation over �
and Q is the scattered wave vector. In the text, we set
Di��ÿ �0� � ���ÿ �0�, and likewise for Df , that is, the
smearing within the coherence volume is suppressed in
order that the results should be as simple as possible.

The ®nite monochromaticity of the incident beam has
an additional effect, not taken into account by the
restricted summation over the coherence volume, owing
to the dependence of the magnitude Q on the magnitude
ki. This may be included by an integration over the
appropriate distribution A�ki ÿ k0� within the coher-
ence volume,

Iray /
����P

j

R
�

A�ki ÿ k0� f �Q�ki�; rj� dki

����2; �22�

where the implicit dependence of Q on ki is made
explicit. Energy ®ltering of scattered radiation is taken
into account at the level of intensities in the normal
manner. Likewise, the angular distribution of the inci-
dent and scattered rays then needs to be taken into
account via an angular resolution function R��; ��
operating on the intensities. R��; �� is equivalently
expressed as a function of the scattered wave vector in
the paragraph below.

Following the nomenclature of Fig. 1, an expression
is derived for the experimental resolution function in
the �qx; qz� coordinate system in terms of the angular
variables � and � and their deviations ��; ��. Three
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principal components are associated with the
spectrometer: the monochromaticity of the incident
X-ray beam, the ®nite divergence of the incident
beam upon the sample, and the ®nite acceptance
angle of the detector. It is assumed that the incoming
and outgoing angular deviations are uncorrelated and
that there is no energy selection of the scattered
photons over the energy range of interest (few eV at a
typical energy of several keV). The sample contributes
to the resolution principally through its mosaic spread
and possibly by its ®nite size for a small incident
beam. Taking the incident monochromaticity, angular
divergence and sample mosaic together, an effective
incident angular divergence �� is de®ned in the
vertical plane. In the same plane, for open detector
slits at a distance l from the sample and an illuminated
sample of length s, we have an outgoing divergence
approximately given by �� � f��2 � ��s=l� sin ��2g1=2. For
an incident beam of height w smaller than the sample
length, s is to be replaced by w= sin �. � and � are
assumed to be distributed about their mean values in
Gaussian fashion, yielding an angular resolution func-
tion

R��; �� � N exp�ÿ���=��2� exp�ÿ���=��2� �23�
with a normalization

N � �������ÿ1 �24�
for the case where the slits are suf®ciently wide open not
to cut the outgoing beam. On transformation to the
�qx; qz� coordinate system,

R��qz; �qy� � NJ exp�ÿAxx� exp�ÿBzz� exp�ÿCxz�
�25�

with

Axx � �cos2 �=����2 � cos2 �=����2���qx=�k0 sin 2���2
�26�

Bzz � �sin2 �=����2 � sin2 �=����2���qz=�k0 sin 2���2
�27�

Cxz � �ÿ2 sin � cos �=����2 � 2 sin � cos �=����2�
� ��qx=�k0 sin 2�����qz=�k0 sin 2��� �28�

J � �k2
0 sin��� ���ÿ1 �29�

2� � �� �: �30�

APPENDIX D

The calculation of absorption corrections when the
absorption over one coherence length is weak, and yet
the total sample absorption is important, proceeds by

summation of intensities from each coherence volume.
This is in contrast to the case of strong absorption where
a summation of amplitudes within the coherence volume
must be made. First, the standard calculation for the
intensity or scattering from a uniform object is made in
two, equivalent, manners. We start with a continuum
approximation: for an incident beam of intensity I0 at an
angle �, the intensity per unit area, from a thickness dz
of sample located at depth z is

dI � I0 exp�ÿ2��z� d�

d


dz

sin �
; �31�

where the full beam is intercepted by the sample and the
effect of its footprint is made explicit. The cross section
per unit volume is d�=d
 and the absorption coef®cient
is de®ned as

�� � �
2

�
1

sin �
� 1

sin �

�
�32�

for a beam incident at angle � and exiting at angle �. The
implicit assumption is that the scattered intensity is
proportional to the illuminated volume even as this
volume is taken to the in®nitessimal dz. This gives, for
scattering from depth z,

I�z� � I0�1ÿ exp�ÿ2��z��
2�� sin �

d�

d

; �33�

which enables corrections to be made by direct multi-
plication. In the case of specular re¯ection from a body
of large dimensions, the expression simpli®es to a total
intensity per unit area

I � I0

4�

d�

d

: �34�

The energy-dependent correction factor of 1=� is to be
compared with the correction 1=�2 in the case of strong
absorption [equation (11)]. In the speci®c case of the
uranium M4-edge treated in the main text, a calculation,
parallel to that given in x4, for this weak absorption limit
yields a Lorentzian line shape of HWHM � 4.4 eV, in
comparison with the two-peaked structure in the bottom
frame of Fig. 7.

An alternative derivation, which highlights the nature
of the approximations, may be made in terms of the
scattering from individual coherence volumes. Since by
assumption the absorption per coherence volume is
weak, the diffracted intensity from a given coherence
volume is proportional to exp�ÿ2��Na�, where Na is the
absorbing depth contained in a coherence volume. The
total intensity per unit area is the sum over the length
of r coherence volumes along the incident-beam
direction,

I � I0

sin �

d�

d

Na

�X
r

exp�ÿ2��Nar�
�
: �35�
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Here the factor Na arises from the diffracted intensity of
an elemental coherence volume [see discussion under
equation (4) in x3]. For a semi-in®nite body in specular
re¯ection, one has, as above,

I � I0

4�

d�

d

: �36�

Finally, the formula for the total intensity per unit
area is written as the sum over the length of r coherence
volumes along the incident-beam direction in the case of
strong absorption. Following the notation in the main
text,

I / ÿ2
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which, for a semi-in®nite body, interpolates between the
limits of strong and weak absorption as

I / ÿ2

ÿ2 � ��Eÿ h- !�2
�

m�1ÿ exp�ÿ��Nmaxa��
�1ÿ exp�ÿ��a��

�2

� 1

�1ÿ exp�ÿ2��Nmaxa�� �38�

uncorrected for footprint or Lorentz factor.

APPENDIX E

The scattering from a set of N consecutive objects in a
given coherence volume with absorption coef®cient � is
given by

I / �1� exp�ÿ2��Na� ÿ exp�ÿ��Na�2 cos�qNa��
� �1� exp�ÿ2��a� ÿ exp�ÿ��a�2 cos�qa��ÿ1; �39�

where the Lorentzian energy resonant pre-factor has
been suppressed for clarity and q is the reduced wave
vector from the Bragg point. This may be readily
extended to deal with the case of more than one scat-
tering species (Stunault et al., 1997). In the appropriate
limits, it reduces to the formulae given in the main text
(xx3; 4).

When ��a is small, corresponding to negligible
absorption over one lattice parameter, and in the region
where cos�qa� is close to 1, the formula simpli®es to

I / �1� exp�ÿ2��Na� ÿ exp�ÿ��Na�2 cos�qNa��
� ���2 � q2�ÿ1: �40�

In the limit that ��Na is dominant, suppressing all
dependence on wave vector in the numerator, one has a
Lorentzian line shape in q at a given photon energy.
Thus, the wave-vector width may, in this limit, become
dependent on �� and independent of N. Given suf®cient
spatial resolution, this may yield a method to extract

��E� from the incident-energy dependence of the wave-
vector line width of the diffraction pro®le.

APPENDIX F

The data for the parameterization of the absorption
coef®cient of the M4 uranium resonance were obtained
by transmission through ®lms of UO2 (Cross et al., 1998).
The data show a very weak oscillation above the
absorption edge which is not captured by our simple
parametric form. The coef®cient, in AÊ ÿ1, over the
experimental range is

�M4
� 10ÿ4

�
1:25� 0:16 invtan��h- !ÿ�E�=ÿ�

� 3:5ÿ2=�ÿ2 � �h- !ÿ�E�2�	; �41�
where the invtan is calculated in radians, the energies
are in keV with �E � 3:728, ÿ � 0:0022, and h- ! is the
incident photon energy. For completeness, a corre-
sponding value for the M5 edge is

�M5
� 10ÿ4

�
0:8� 0:16 invtan��h- !ÿ�E�=ÿ�

� 7:5ÿ2=�ÿ2 � �h- !ÿ�E�2�	 �42�
with parameters �E � 3:552 and ÿ � 0:0020.

In the calculations shown in the main text, ÿ and �E
of the resonance [equations (10) and (12)] were set
equal to their values at the M4-absorption edge.
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